
Pub/sub and 
others design 
pattern with js 
Vítor Norton @vt_norton

Dev Advocate @ SuperViz



About me
• Strong .NET background

• 5 years into TypeScript and React development

• Twitch Streamer (@vt_norton)

• Dev Advocate @ SuperViz

• Love greek mythology

• Passionate about movies and music 



DESIGN PATTERNS
• Standardizes solutions for your team

• Guide for solving known and commons 

problems

• Make it easier to write reusable and 

maintainable code

• Today I will show two behavior patterns



Why learn them?
• Boost career prospects

• Facilitate communication

• Improve your code quality

• Expand what you can do



Observer pattern

Simple and widely used messaging design, it 

contains two entities: the subject and the 

observer, and this is their behavior:

• The subject maintains a list of its dependents, 

called observer

• The subject notifies observers of any state 

changes automatically



Observer pattern
Real case scenario

Robert wants a new iPhone The store!

Two ways to solve this without the observer pattern



First way to do it
Without Observer Pattern

The stores doesn’t have it yetHe goes to the store to check 

if it arrived



First way to do it
Without Observer Pattern

The stores doesn’t have it yetHe goes to the store to check 

if it arrived

Repeat every day to check it it 

arrived



Second way to do it
Without Observer Pattern

When the product arrive at 

the store

Sends notification 

to everyone

Robert doesn’t need to go to the 

store every day, he is notified



Second way to do it
Without Observer Pattern

When the product arrive at 

the store

Sends notification 

to everyone

Robert doesn’t need to go to the 

store every day, he is notified

Sarah didn’t want to know

OMG! Another spam!



The observer pattern

Sends notification 

to the subscribers

Robert tells the store he wants a 

new iPhone

A new iPhone arrive



Hands-on



Pub sub pattern
The Publish/Subscriber Pattern, or PutSub for close friends, 

also widely used for messagin, it contains two entities: the 

publisher and the subscriber. This is their behavior:

• The subscriber connects to a topic

• The publisher sends messages to a topic

• The subscriber receives messages from that topic



Pub Sub Pattern
Real case scenario

Robert wants a new iPhone The store!



Pub Sub Pattern
Real case scenario

Robert wants a new iPhone The store!A market place

(I wanted a better icon, but 

this is the closest emojie 

available)



Pub Sub Pattern
Real case scenario

Robert subscribes to the market 

place on the event ‘new-phone’



Pub Sub Pattern
Real case scenario

Robert subscribes to the market 

place on the event ‘new-phone’

The store publish the arrival of 

the new iPhone



Pub Sub Pattern
Real case scenario

Robert subscribes to the market 

place on the event ‘new-phone’

The store publish the arrival of 

the new iPhone

The marketplace tells Robert it 

arrived!



Hands-on



Hands-on



A bit more 
complex, right?
I got you covered! 



frameworks
I got you covered! 

SuperViz SDK – Real-Time Communication

It uses a concept of a room, everyone in the room, independent of 

devices or network, will receive the message.

superviz.com



resources

Design Pattern #3 - Observer Pattern 

DEV Community

Design Pattern #4 - Pub/Sub Pattern 

DEV Community

Understanding and implementing 
Event-Driven Communication in 
Front-End Development 

DEV Community

https://dev.to/superviz/design-pattern-3-observer-pattern-36eo
https://dev.to/superviz/design-pattern-3-observer-pattern-36eo
https://dev.to/superviz/design-pattern-4-publishersubscriber-pattern-4jg9
https://dev.to/superviz/design-pattern-4-publishersubscriber-pattern-4jg9
https://dev.to/superviz/understanding-and-implementing-event-driven-communication-in-front-end-development-e75
https://dev.to/superviz/understanding-and-implementing-event-driven-communication-in-front-end-development-e75
https://dev.to/superviz/understanding-and-implementing-event-driven-communication-in-front-end-development-e75
https://dev.to/superviz/understanding-and-implementing-event-driven-communication-in-front-end-development-e75

	Slide 1: Pub/sub and others design pattern with js 
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

