PUB/SUB AND
OTHERS DESIGN
PATTERN WITH JS

Vitor Norton @vt_norton
Dev Advocate @ SuperViz

ABOUT ME

« Strong .NET background

5 years into TypeScript and React development
* Twitch Streamer (@vt_norton)

* Dev Advocate @ SuperViz

* Love greek mythology

e Passionate about movies and music

Standardizes solutions for your team
Guide for solving known and commons
problems

Make it easier to write reusable and
maintainable code

Today | will show two behavior patterns

WHY LEARN THEM?

* Boost career prospects
 Facilitate communication
* Improve your code quality

» Expand what you can do

[athult swim]

OBSERVER PATTERN

Simple and widely used messaging design, it

contains two entities: the subject and the

observer, and this is their behavior:

* The subject maintains a list of its dependents,
called observer

« The subject notifies observers of any state

changes automatically

Real case scenario

OBSERVER PATTERN

= 24 H

- O
Robert wants a new iPhone The storel

Two ways to solve this without the observer pattern

Without Observer Pattern

FIRST WAYTODOIT

24 H

) W _ é [T

He goes to the store to check The stores doesn't have it yet

if it arrived

Without Observer Pattern

FIRST WAYTODOIT

24 H
) ﬁ }III

He goes to the store to check The stores doesn't have it yet

if it arrived

Repeat every day to check it it

arrived

Without Observer Pattern

7 . SECOND WAY TO DO IT

24 H

M —> — &

When the product arrive at Sends notification Robert doesn’t need to go to the

the store to everyone store every day, he is notified

Without Observer Pattern

SECOND WAYTODOIT

24 H

o - - &

When the product arrive at Sends notification Robert doesn't need to go to the
the store to everyone store every day, he is notified

&

&= = OMG! Another spam!

Sarah didn’t want to know

THE OBSERVER PATTERN

Robert tells the store he wants a

new iPhone

. _ Sends notification
A new iPhone arrive '
to the subscribers

HANDS-ON

// Define a class for the Provider
Store {

}

// Add an observer to the list
(observer) {
();
}

// Notify all observers about new product
(product) {

(observer =>

}
}

// Define a class for the Observer
Customer {
(product) {
(*New product added:
}
}

// Usage
store = ();
customer = ();
(); // Add a customer to the store's observers
('iPhone 15'); // Notify all observers about a new product

PUB SUB PATTERN

The Publish/Subscriber Pattern, or PutSub for close friends,
also widely used for messagin, it contains two entities: the

publisher and the subscriber. This is their behavior:

Real case scenario

PUB SUB PATTERN

- 24 H

Real case scenario

PUB SUB PATTERN

)
b)

Robert wants a new iPhone

™

A market place
(I wanted a better icon, but
this is the closest emojie

available)

24 H
o

1]

The store!

Real case scenario

PUB SUB PATTERN

Real case scenario

PUB SUB PATTERN

e

S ' ‘ oo !' e s s Robert subscribes to the market
. - e e e e e e e place on the event ’new-phone’
& 24 H) \ \

1]

The store publish the arrival of

the new iPhone

Real case scenario

PUB SUB PATTERN

™

Robert subscribes to the market

place on the event 'new-phone’

(1]

The store publish the arrival of

the new iPhone

)
b)

The marketplace tells Robert it

arrived!

HANDS-ON

("new-phone",

callbackFunction(payload) {
// do something

phone = {
: '"1Phone 16",
: 'Apple’

("new-phone",

HANDS-ON

PubSub {

= {}; // It has the an empty list of events

// The publish method takes an event name and data
(;) {
// Check if the event doesn't exist
(! : [1)

.
]

// For each subscriber of this event,
// call the callback function with the provided data
| 1. (() => A
();
I);
}

// The subscribe method takes an event name and a callback function
()) {
// If the event doesn't exist yet, initialize it as an empty array
(! . [1)
. [1 =11;

// Push the callback function into the array of
// callbacks for the given event

[1. ();

COMPLEX, RIGHT?

| got you covered! &

"
-
o
Z
-
0
<

| got you covered! @

FRAMEWORKS

SUPERVIZ SDK - REAL-TIME COMMUNICATION

It uses a concept of a room, everyone in the room, independent of
devices or network, will receive the message.

superviz.com

RESOURCES
Rl

o
L .21 Design Pattern #3 - Observer Pattern

d DEV Community

= Design Pattern #4 - Pub/Sub Pattern
DEV Community

Understanding and implementing
Event-Driven Communication in
Front-End Development

__: DEV Community

https://dev.to/superviz/design-pattern-3-observer-pattern-36eo
https://dev.to/superviz/design-pattern-3-observer-pattern-36eo
https://dev.to/superviz/design-pattern-4-publishersubscriber-pattern-4jg9
https://dev.to/superviz/design-pattern-4-publishersubscriber-pattern-4jg9
https://dev.to/superviz/understanding-and-implementing-event-driven-communication-in-front-end-development-e75
https://dev.to/superviz/understanding-and-implementing-event-driven-communication-in-front-end-development-e75
https://dev.to/superviz/understanding-and-implementing-event-driven-communication-in-front-end-development-e75
https://dev.to/superviz/understanding-and-implementing-event-driven-communication-in-front-end-development-e75

	Slide 1: Pub/sub and others design pattern with js
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

